

ONCODAILY MEDICAL JOURNAL

abstract

Performance Analysis of the Sulfamic Acid/EPR System in the Assessment of Doses Delivered in HDR Brachytherapy Treatment

Ghizlane Boukhris, Mohammed Mikou, Omar Rhazouani, Redouane Baydaoui, Sofia Jebbari, Abeslam Bouk, Dounia Kamal

DOI: 10.69690/ODMJ-018-3101-6493

AMSTRO
Asia and Middle East Society of
Therapeutic Radiation and Oncology
Affiliated with ASTF

Asia and Middle East Society for Radiation Therapy and Oncology, 2026

abstract

Performance Analysis of the Sulfamic Acid/EPR System in the Assessment of Doses Delivered in HDR Brachytherapy Treatment

Authors: Ghizlane Boukhris¹, Mohammed Mikou¹, Omar Rhazouani², Redouane Baydaoui², Sofia Jebbari³, Abeslam Bouk³, Dounia Kamal³

Affiliation: ¹ Watch Laboratory for Emerging Technologies, Faculty of Science and Techniques, University Hassan I, Morocco

² Laboratory of Health Sciences and Technologies, High Institute of Health Sciences, University Hassan I, Settat, Morocco

³ Ryad Oncologia Clinic, Casablanca, Morocco

DOI: 10.69690/ODMJ-018-3101-6493

Introduction: Accurate verification of the absorbed dose delivered in high-dose-rate (HDR) brachytherapy is essential to ensure treatment safety and effectiveness, and to avoid clinically significant underdosing or overdosing. This study investigates an experimental dosimetric approach for independent dose verification around a ¹⁹²Ir HDR brachytherapy source.

Methodology: A cylindrical phantom made of epoxy resin was designed to reproduce clinical brachytherapy conditions. The phantom accommodates a ¹⁹²Ir source and multiple dosimeters positioned on predefined circular trajectories to allow spatial dose mapping. Computed tomography (CT) imaging was performed to localize the dosimeters accurately and to enable dose calculation using a treatment planning system (TPS). Sulfamic acid samples (80 ± 1 mg) were used as dosimeters and irradiated using a

Nucletron microSelectron HDR afterloader at the Ryad Oncologia Clinic (Casablanca). Two irradiation protocols were conducted: one to establish a calibration curve over the dose range 1–8 Gy, and a second to measure the dose distribution around the source. The irradiated samples were analyzed using electron paramagnetic resonance (EPR) spectroscopy, employing the peak-to-peak signal evaluation method.

Results: The sulfamic acid dosimeters exhibited a strong linear EPR response within the investigated dose range. Experimental measurements enabled the assessment of the radial dose distribution and dose gradient around the ¹⁹²Ir source. The measured absorbed doses were compared with TPS calculations, demonstrating good agreement in terms of spatial dose variation. The combined standard measurement uncertainty was estimated to be approximately 8% (k = 2).

Conclusion: The results demonstrate that the sulfamic acid/EPR dosimetry system, used in conjunction with an epoxy resin-based cylindrical phantom, provides a reliable and sensitive method for dose verification in HDR brachytherapy. This approach shows strong potential for quality assurance applications and for independent verification of delivered doses in clinical brachytherapy practice.

Conflict of interests: The authors declare no conflict of interests.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Licence: © Author(s) 2026. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, and unrestricted adaptation and reuse, including for commercial purposes, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

To view a copy of this license, visit <https://creativecommons.org/licenses/by/4.0/>.