

ONCODAILY MEDICAL JOURNAL

abstract

Development and Validation of a Low-Cost Prostate Brachytherapy Ultrasound QA Phantom Based on AAPM TG-128 Protocol

Hamid Jamil, Asdar Ul Haq

DOI: 10.69690/ODMJ-018-3101-6891

AMSTRO

Asia and Middle East Society of Therapeutic Radiation and Oncology

Affiliated with ASTF

Asia and Middle East Society for Radiation Therapy and Oncology, 2026

abstract

Development and Validation of a Low-Cost Prostate Brachytherapy Ultrasound QA Phantom Based on AAPM TG-128 Protocol

Author: Hamid Jamil¹, Asdar UI Haq¹

Affiliation: ¹Department of Radiation Oncology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan

DOI: [10.69690/ODMJ-018-3101-6891](https://doi.org/10.69690/ODMJ-018-3101-6891)

Introduction: Ultrasound image guidance and quality assurance (QA) of imaging and needle placement are important for safe and accurate prostate brachytherapy. However, the QA phantoms recommended by AAPM TG-128 are very costly and difficult to obtain in low-resource settings. This study aimed to design and test a low-cost, tissue-like ultrasound phantom that follows the main requirements of TG-128.

Methodology: The phantom was made using a agar-based gel with added silica powder, graphite and glycerol to match soft-tissue ultrasound properties. Simple geometric structures, including spherical and cylindrical targets, were incorporated to represent key anatomical regions relevant to prostate brachytherapy QA, as recommended in AAPM TG-128. The phantom was evaluated on a clinical transrectal ultrasound system to check image quality, geometric accuracy, and repeatability of needle insertion. Distance measurements, contrast visibility, and needle tracking were compared with TG-128 recommendations.

Results: Ultrasound images showed clear visibility

of all internal structures. The size measurements were within ± 1 mm of the intended design. Repeated needle insertions showed a consistent accuracy within 1.5 mm. The phantom remained stable for routine QA use, and the total fabrication cost was very low compared with commercial phantoms.

Conclusion: This study shows that a simple, low-cost prostate brachytherapy ultrasound phantom can be made locally while still meeting key TG-128 requirements. It provides reliable performance for QA, commissioning, and training. Future work will focus on making longer-lasting versions using stronger gels or urethane materials, as well as using replaceable inserts to increase durability.

Conflict of interests: The authors declare no conflict of interests.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

License: © The Author(s) 2026. This is an open

access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, and unrestricted adaptation and reuse, including for commercial purposes, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. To view a copy of this license, visit <https://creativecommons.org/licenses/by/4.0/>.