

ONCODAILY MEDICAL JOURNAL

abstract

In-Vivo EPID Gamma Constancy During DIBH Tangential Breast Radiotherapy: Cohort Performance, and Day-to-Day Stability

**Mostafa Al Etreby, Mohamed Sayed, Maha Al Taher,
Shamel Soaida**

DOI: [10.69690/ODMJ-018-3101-6906](https://doi.org/10.69690/ODMJ-018-3101-6906)

Asia and Middle East Society for Radiation Therapy and Oncology, 2026

abstract

In-Vivo EPID Gamma Constancy During DIBH Tangential Breast Radiotherapy: Cohort Performance, and Day-to-Day Stability

Author: Mostafa Al Etreby¹, Mohamed Sayed¹, Maha Al Taher¹, Shamel Soaida¹

Affiliation: ¹Dr.Soliman Fakeeh Hospital, Jeddah, Saudi Arabia

DOI: [10.69690/ODMJ-018-3101-6906](https://doi.org/10.69690/ODMJ-018-3101-6906)

Introduction: Deep inspiration breath hold (DIBH) is widely used to reduce cardiac and pulmonary dose in left-sided breast radiotherapy. However, daily reproducibility can vary with breath-hold amplitude, patient coaching, and immobilization consistency. In-vivo EPID gamma analysis offers a practical lens on treatment constancy across fractions. Aim was to quantify in-vivo delivery constancy using EPID-based gamma metrics under a 3%/4 mm criterion, compare medial vs lateral tangential fields, and identify patterns of day-to-day variability across a clinical cohort.

Methodology: Integrated EPID images were collected for multiple fractions per patient and analyzed with a 3%/4 mm gamma criterion. For each fraction/field we recorded pass rate (%), mean gamma, and the area with $\gamma > 2\%$. We defined failure as any of: pass $< 95\%$, mean $\gamma > 1.0$, or $\gamma > 2\% > 2\%$. Metrics were aggregated per patient and per field (med/lat). A stability index was computed as any of: pass $< 95\%$, mean $\gamma > 1.0$, or $\gamma > 2\% > 2\%$. Metrics were

aggregated per patient and per field (med/lat). A stability index was computed as $100 \times \text{SD}(\text{Mean } \gamma) / \text{Mean}(\text{Mean } \gamma)$, indicating fraction-to-fraction variability.

Results: Across 231 integrated images, median pass rate was 98% (mean $94.5\% \pm 9.0$). Mean gamma was 0.31 ± 0.18 (median 0.26). The cohort mean area with $\gamma > 2\%$ was $0.64\% \pm 3.39$. The overall fraction failure rate (any criterion) was 26.8%, typically clustering within specific patients and/or in later fractions. Field-level comparison showed differences between medial and lateral tangents in several patients (lateral fields more often degraded late in the course). Patients with higher stability index exhibited greater day-to-day drift, likely linked to DIBH amplitude reproducibility, arm positioning consistency, and coaching fatigue.

Conclusion: In-vivo EPID gamma at 3%/4 mm demonstrates generally high agreement during DIBH breast RT, while revealing clinically relevant clusters of

instability. Routine monitoring of simple gamma descriptors (pass rate, mean γ , $\gamma > 2\%$, stability index) can flag patients/fields that benefit from reinforced coaching or minor gating adjustments.

Conflict of interests: The authors declare no conflict of interests.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

License: © The Author(s) 2026. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, and unrestricted adaptation and reuse, including for commercial purposes, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. To view a copy of this license, visit <https://creativecommons.org/licenses/by/4.0/>.